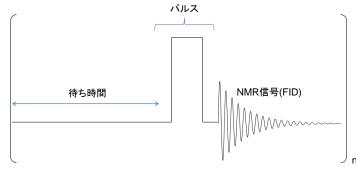


【技術資料】NMR 入門講座 ⑤固体 1 次元測定とスペクトルの特徴

概要

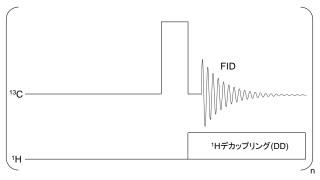

核磁気共鳴(nuclear magnetic resonance: NMR)法は、分子構造や様々な分子間相互作用、分子の運動状態などを調べる手法で、高分子化学、生物化学、医学等の広範囲な分野で活用されています。今回は、固体NMRの1次元測定手法の紹介、1次元スペクトルの特徴について紹介します。

1. 固体 NMR の 3 つの測定法

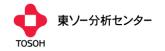
固体 NMR の 1 次元測定手法である、SP(Single Pulse)法、DD(Dipolar Decoupling)法、CP(Cross Polarization)法の 3 種類の測定法について詳しく紹介します。

1) SP 法

SP 法は最も単純な測定法で、測定核種をラジオ波の照射により励起させ、FID を観測する方法です【図 1】。 パルスシークエンスは溶液の ¹H NMR と同じですが、固体 NMR では MAS 回転を行うため、溶液 NMR との区別 のため SPMAS 法、¹H MAS NMR 等と呼ばれます。



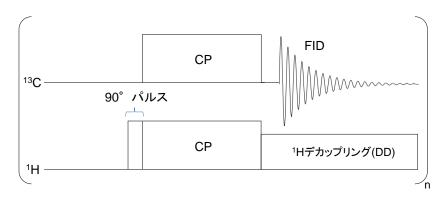
【図 1】SP 法のパルスシークエンス


2) DD 法

DD 法は、異種核間の双極子相互作用(前回講座の 4.補足を参照)が大きい場合に用いられます。

例として、 13 C 核種の DD 法のパルスシークエンスを示します【図 2】。 13 C 測定では、 1 H- 13 C 間の双極子相互作用(前回講座の 4.補足を参照)がスペクトルを広幅化するため、 1 H のデカップリング(Dipolar Decoupling)を行い、スペクトルを先鋭化します。この手法でも MAS を用いるため、DDMAS 法とも呼ばれます。

【図 2】DD 法のパルスシークエンス



3) CP 法

CP 法は、交差分極(Cross Polarization)法を用いた 1 次元測定法です。例として、¹³C 核種の CP 法のパルスシークエンスを【図 3】に示します。

CP 法では、① 1 H 核種を 90 $^{\circ}$ パルスで励起する、② 1 H 核種の磁化を、双極子相互作用を利用して 13 C 核種へ移す(交差分極)、③ 13 C 核種の FID を取得する($+^{1}$ H デカップリング)の 3 つの過程からなります。

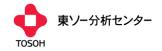
CP 法も MAS と併用されるため、一般的に CPMAS 法と呼ばれます。

【図 3】CP 法のパルスシークエンス

4) 測定法の使い分け

紹介した3つの測定法の対象核種と、それぞれの特徴について【表1】にまとめました。

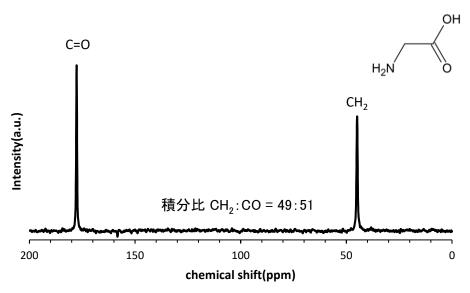
測定法	対象核種	特徵
SPMAS	¹H、¹ºF等	 手法が簡単 MASが速い方が高分解能(¹H、¹ºF)
DDMAS	· ¹³ C、 ²⁹ Si、 ³¹ P等	・観測核近傍に水素がある場合に使用 ・定量性のあるスペクトル取得が可能 ・待ち時間が長い場合有(数十秒~数百秒)
CPMAS		・観測核近傍に水素がある場合に使用 ・DDMASに比べ、高感度、待ち時間短縮 ・定量性なし


【図1】3つの測定手法の対象核種とその特徴

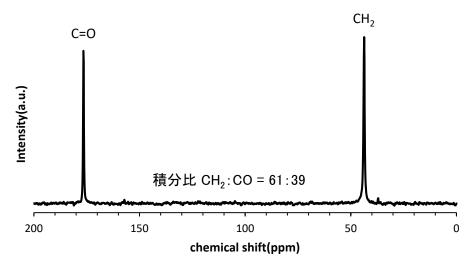
SPMAS 法は最も簡単な手法で、高速で MAS 回転を行うことで、¹H や ¹⁹F スペクトルを高分解能化することが可能です。

DDMAS 法は、測定核種の近傍に水素元素がいる場合(高分子や有機材料の ¹³C 核種等)に用いられ、定量性のあるスペクトルを取得することが可能です。しかし、材料や測定核種によっては、待ち時間が長くなる傾向があります。

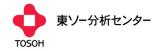
CPMAS 法は、DDMAS 法に比べ感度が数倍高くなります。また、緩和時間が ¹³C 核種より短い ¹H 核種で決まるため、DDMAS 法に比べ待ち時間の短縮が可能です。しかし、スペクトルの定量性はありません。


分析試料・分析目的に応じて、これらの測定法を使い分けることが重要です。

5) 測定例


DDMAS 法と CPMAS 法の使い分けについて、グリシンの ¹³C DDMAS NMR スペクトル【図 4】、¹³C CPMAS NMR スペクトル【図 5】を例に紹介します。

 13 C DDMAS NMR スペクトルでは、待ち時間が長く、測定に長い時間が必要でしたが、積分値より CH_2 基と C=O 基の割合が正しく算出できており(1:1)、定量性のあるスペクトルとなっています。

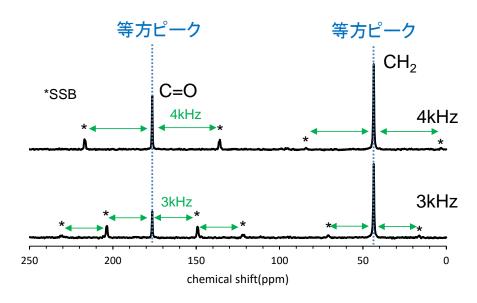

【図 4】 グリシンの ¹³C DDMAS NMR スペクトル(待ち時間 100s、積算回数 64 回、測定時間 1h 47m)

一方、¹³C CPMAS NMR スペクトルでは、短い待ち時間、少ない積算回数で、DDMAS スペクトルと同等のスペクトルが得られました。しかし、積分比は実際の存在比に対応しておらず、定量性はありませんでした。

【図 5】グリシンの ¹³C CPMAS NMR スペクトル(待ち時間 3s、積算回数 16 回、測定時間 48s)

定量分析を行いたい場合は DDMAS 法を、定性分析で素早く測定したい場合は CPMAS 法を選択すると良い場合が多いです。

2. 固体 NMR スペクトルの特徴


固体 NMR スペクトルの特徴について、溶液 NMR スペクトルとの違いを中心に紹介します。

1) 等方ピークとスピニングサイドバンド

固体 NMR では、溶液 NMR では見られない、異方性相互作用に由来するスピニングサイドバンド(SSB)が出現することが多く、SSB を等方ピークと間違えないよう注意する必要があります。

SSB と等方ピークを見分ける方法としては、SSB と疑われるピークと等方ピークの間隔を確認する方法、MAS 回転数を変えたスペクトルを比較する方法が挙げられます【図 6】。

SSB は MAS 回転数間隔で現れる性質があるため、等方ピークと別のピークの間隔が MAS 回転周波数と一致する場合は、SSB の可能性があります。また、MAS 回転周波数を変えたスペクトルを比較すると、SSB は化学シフトが変化しますが、等方ピークは化学シフトが変化しないため、両者を区別することができます。

【図 6】グリシンの ¹³C CPMAS NMR スペクトル(上:MAS=4kHz、下:MAS=3kHz)

2) ピーク分裂

溶液 NMR では、「H スペクトルのピーク分裂から、隣接する「H 元素の数を調べることができました。一方、固体 NMR では、間接スピン結合に比べ、異方性相互作用によるスペクトルの広幅化の影響が大きく、一般的にピーク分裂は観測できません。また、「H デカップリングを行った場合、「H-測定核種間の間接スピン相互作用は消去され、ピーク分裂は観測できません。

ピーク分裂を観測するためには、間接スピン結合のみを残す手法である J 分解 NMR 等が必要です。1)

参照文献

1) 林 繁信、中田 真一 編、「チャートで見る材料の固体 NMR」、講談社サイエンティフィク(1993)