

【装置紹介】引張試験機

概要

プラスチック製品の設計をするためには、力学特性の把握は必要不可欠です。引張試験機は材料の変形し やすさ、壊れやすさを調べるための装置で、力学特性の代表例である引張強度や引張弾性率等の測定が可 能です。弊社では JIS 規格等に則り測定を行っております。

装置

装置外観写真を【図1】、装置スペックを【表1】に示します。

【図1】引張試験機の外観写真

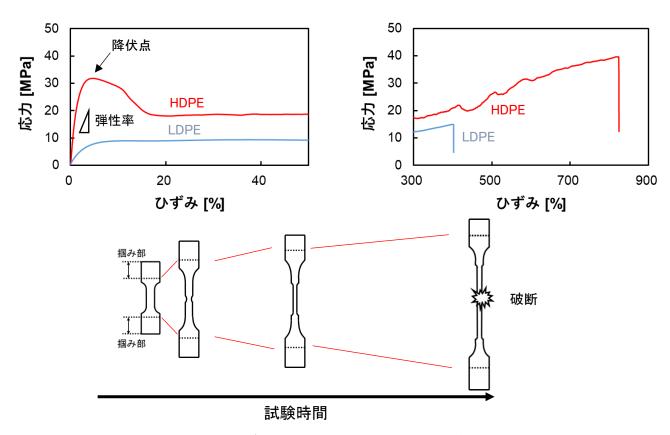
【表 1】引張試験機の仕様

装置	島津製作所製万能試験機		
	AG-2000B		
試験項目	引張試験		
温調範囲	−65 ~ 250°C		
ロードセル	50N, 1kN, 5kN, 20kN		
対応規格	ISO527, JIS K 7161, JIS K 7113		

解析事例

分子構造が異なる 2 種類のポリエチレン(HDPE、LDPE)の引張試験を実施しました。【図 2】に引張試験で得られた応力-ひずみ曲線(S-S カーブ)を、【表 2】に引張試験値を示します。

HDPE は分岐がほとんどない直鎖状の分子構造ですが、LDPE は分岐を多く有しています。これにより、結晶構造に差異が生じます。この構造的な差異が、両者の硬さ(弾性率)や引張強度に顕著な影響を与えます。


引張変形のごく初期段階では、ポリマーは弾性体として挙動し、応力とひずみは比例関係(フックの法則)に従います。しかし、ポリマーは粘弾性体であるため、比例関係が成り立つ領域はごく初期のひずみ領域に限られます。JIS K7164 規格では、0.05%および 0.25%の微小ひずみで弾性率を算出します。

変形初期では、ひずみの増加に伴い応力も増大しますが、ある程度ひずみが進行すると応力が増加しなくなります。これを降伏点と呼びます。降伏点を超えてさらに変形を加えると最終的に破断に至ります。

引張試験では、このように弾性率、降伏応力、破断等の物性値を得ることができます。これらの物性値はポリマーの構造と密接に関係しています。

【名 Z】 HDFL C LDFL Oグ 引放試験値							
	試料	弾性率	引張降伏応力	引張破断応力	引張破断ひずみ		
		[MPa]	[MPa]	[MPa]	[%]		
	HDPE	1500	31.2	39.7	820		
	LDPE	260	9.4	15.0	400		

【表 2】HDPEとLDPEの引張試験値

【図2】応力-ひずみ曲線(上)と試験片変形のイメージ図(下)

適用分野:高分子材料、プラスチック、フィルム及びシート キーワード:引張試験、力学特性、応力、ひずみ、ポリエチレン